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ABSTRACT 

 

More than 200 million people worldwide live with some type of disability, with a 

large number of people having motor disabilities. This hinders their ability to perform daily 

activities of life. Rehabilitation is a technique through which this lost motor functioning 

can be regained. In rehabilitation the affected part is subjected to continuous passive 

motions, this exploits the plasticity trait of human brain in achieving back the lost motion. 

Exoskeleton have potential capabilities to provide rehabilitation. Several studies in the past 

have utilised exoskeletons to provide the same.   

In the proposed study, we have designed an exoskeleton consisting of the following 

parts Circular part, Linkage structure, Base. For calculating the dimensions of linkages 

we used anthropometric data of human finger and dynamically simulated the model to 

testify that the designed part is mimicking the natural trajectory of human hand. Static 

simulation of  the designed model is also carried out to assess the structural strength. In the 

simulation results, all the design parameters comes well under stipulated limits.  

For actuation and control, we proposed the use of microcontrollers coupled with 

Brain Machine Interface (BMI). The different stages of BMI include Signal acquisition, 

feature extraction, feature selection and classification. The EEG dataset used in this work 

was created by the University of Tubingen, Germany. EEG signals associated with the 

imagined movement of right hand and relaxation state were processed using wavelet 

transform analysis for feature extraction. The optimum classification performance of 

82.911% was achieved with a random forest classifier.  

As a Future prospect this classified data can be utilised to programme a 

microcontroller linear actuator named Firgelli for the execution of different tasks. 

 

 



v 

 

ACKNOWLEDGEMENTS 

In the name of Allah, Most Gracious, Most Merciful 

We would like to express our deepest gratitude to our supervisor Dr. M. Muzammil 

for his inspiration and encouragement in the successful completion of this work. He has 

always been cordial, attentive, responsible and supportive throughout all the highs and 

lows during the journey. We are highly indebted to him for his guidance and constant 

supervision as well as for providing necessary information regarding the project & for his 

support in completing the project. We would also like to extend our sincere gratitude to 

him for providing his invaluable guidance, comments and suggestions throughout the 

course of the project. He invested a lot of his time for our work, giving valuable inputs and 

took great pains to see us through. Without his knowledge and guidance, this project would 

not have been possible. We have learnt a lot from him and we humbly acknowledge a 

lifetime deep gratitude to him. He devoted a lot of time and patience to the reading and 

correction of this work. Also, we would like to acknowledge the unconditional help 

rendered to us by Mr. Siddhartha Bharadwaj, PhD candidate, MED, AMU. Apart from 

this, we are also extremely thankful to Dr. Omar Farooq and his student Mr. Bilal Alam 

Khan, both from ELED, AMU, for their expert guidance and help during the course of this 

study. 

Finally, we wish to thank our parents, brothers and sisters for their constant support 

and encouragement and the motivation they provided which kept us going even in the hard 

times.  

 

Date:      (Sheeraz Athar, Ahmad Raza Usmani) 

Place:       



vi 

 

TABLE OF CONTENTS 

  

  Content         Page No 

Students’ declaration        iii 

Abstract         iv 

Acknowledgements                    v 

Contents                                                              vi 

List of Figs                   viii 

List of Tables                     ix 

List of Symbols                                                                  x 

List of Abbreviations                     xi 

CHAPTER 1:   Introduction  

1.1 Overview and Motivation of the Study    2 

1.2 Problem Formulation       3 

1.1 Organization of the Thesis      3 

 CHAPTER 2:   Literature Review 

2.1 Literature Review        5 

CHAPTER 3:   Methodology 

            3.1 Methodology        9 

 3.2 Design          9 

3.3 Actuation Mechanism        11 

3.4 Static Simulation       12 

3.5 Dynamic Simulation       13 

3.6 Manufacturing                   15 



vii 

 

CHAPTER 4:   Controlling 

 4.1 Overview of Brain Computer Interface    16 

 4.2 Electroencephalography (EEG)      18 

4.3 Data Acquisition       22 

4.4 Feature extraction       23 

4.5 Feature selection       27 

4.5 Classification        29 

 

CHAPTER 5:   Results and Discussions 

5.1 Results of static simulation      31 

5.2 Results of feature classification     32 

           

CHAPTER 6:   Conclusions and Further Scope 

6.1 Conclusion        34 

 

REFERENCES           36

                                                                                                

 
  



viii 

 

LIST OF FIGURES 

Fig No. Caption Page No. 

Fig. 2.1 Different devices proposed in the past. 8 

Fig. 3.1 Clockwise from the top: 1. Linkage structure, 2. Base, 3. 

Circular Part. 

10 

Fig. 3.2 Proposed device mounted on Human Hand 11 

Fig. 3.3 Proposed Design with Actuator 12 

Fig. 3.4 Actuation Mechanism 12 

Fig. 3.5 Model with specified load 13 

Fig. 3.6 Marked finger in open position          14 

Fig. 3.7 Marked finger in closed position showing trajectory 14 

Fig. 3.8 Trajectory of the finger assisting device 14 

Fig. 3.9 Variation of Human Finger & Exoskeleton with Time 14 

Fig. 3.10 Manufactured Device mounted on Hand 15 

Fig. 4.1 Showing different parts of human brain 16 

Fig. 4.2 Electrode locations of International 10-20 system for EEG 

recording 

19 

Fig. 4.3 Different brain rhythm as measured by EEG 20 

Fig 4.4 EEG recording of subject showing various electrodes while 

performing MI task 

22 

Fig 4.5 Experimental setup for EEG recording 22 

Fig. 4.6 Showing Histogram plots of the two classes. 23 

Fig. 4.7 Showing relative feature importance 26 

Fig. 4.8 Showing decision tress in a random forest 29 

Fig. 5.1 Distribution of Stress 31 

Fig. 5.2 Variation of Displacement 31 

Fig. 5.3 Variation of Strain            31 

Fig. 5.4 Factor of safety Variation 31 

 

  



ix 

 

LIST OF TABLES 

Table No.          Title Page No. 

Table 1. Showing different EEG bands 20 

Table 2. Showing relative feature importance of the features 27 

Table 3. Pseudo Code for Random Forest algorithm 30 

Table 4. Showing different combined features and the 

corresponding selected features 

32 

Table 5 Shows the classification accuracies on the testing data for 

the different combined features 

32 

  



x 

 

 

LIST OF SYMBOLS 
 

 F1     IQR 

 F2     MAD  

 F3     Mean Absolute Value  

 F4     Variance 

 F5     Skewness 

 F6     Kurtosis 

 F7     Energy 

 F8     Standard Deviation 

  



xi 

 

 

LIST OF ABBREVIATIONS 
 

  EEG     Electroencephalogram  

  EMG     Electromyography 

BCI      Brain Computer Interface 

MI      Motor Imagery  

RF      Random Forest 

MCP     Metacarpophalangeal joint 

                 PIP      Proximal Interphalangeal joint 

 

                 DIP      Distal Interphalangeal joint 

 

     MED     Mechanical Engineering Department 

 

     AMU     Aligarh Muslim University 

 

     ELED     Electronics Engineering Department 

   



1 

 

Chapter 1 

Introduction 

The ability to move is essential for basic activities in everyday life. Several motor 

dysfunctions significantly reduces the patient’s quality of life. A disabled member loses 

his independence in particular. Stroke, Myoclonus, Huntington's disease, etc. are the main 

causes of motor dysfunction. In addition, various traumatic accidents lead to injury, 

resulting in temporary loss of exercise. In all of these cases, the patient is in great need of 

returning to a normal state. Rehabilitation is the process used to restore the flexibility of 

the affected part. 

Motorized repetitive exercises for human joints have proven to be an effective 

solution for the recovery of lost motion. Recent technological advances have focused on 

functional exercises to restore the motion of upper and lower limbs. The number of patients 

requiring physical rehabilitation of the upper limbs has increased dramatically. This 

phenomenon automatically leads to an increase in the number of therapists and caregivers 

who help the physically disabled at home, which may become a serious problem in the 

near future. Rehabilitation robot systems can be considered an effective solution to this 

type of problem. However, the availability of these devices is still limited and there is more 

work in one area. The main purpose of this work is to provide robotic solutions by 

attempting to improve existing upper limb rehabilitation. 
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1.1 Overview and Motivation of the Study  

Neuro-rehabilitation has been identified as a major challenge in the current era, 

mainly because the population of people affected with neurological disorders (e.g., stroke, 

Alzheimer, and Parkinson) is rapidly increasing. According to the latest data from Medical 

News Today, 5 million people in the United States have some type of serious body 

paralysis [1]. Currently, there is no method to cure this devastating paralysis case, such as 

complete spinal cord injury (SCI) [2]. It has been reported by CDC that more than 17 

million people found it difficult to stroll even a short distance of quarter mile. Stroke is the 

leading cause of disability worldwide [3]. Hemiparesis or unilateral paresis is one of the 

most common aftermath of stroke causing weakness of the muscles leading to an abnormal 

posture, movement disabilities, thus degrading the quality of life of stroke/trauma patients 

[4]. Hemiparesis in its most unpleasant form causes one side of the body to be paralyzed 

resulting in reduced muscle strength. Because of which, people with hemiparesis find 

difficulty in accomplishing their daily life activities such as walking, grasping objects, etc. 

[5]. The mortality rate is 50% and those who survive, survives with a permanent disability 

[6]. The initial treatment provided to these stroke/trauma patients is in the form of physical 

therapy so that they can perform their basic daily life activities. Treatment through 

exercises, physical therapy or rehabilitation clinics to some extent help in easing their lives 

by enabling them to use wheelchairs, walking on their own, moving upstairs, etc. However, 

the percentage of post stroke/trauma patients able to perform these tasks is quite depressing 

[7]. Hence, there is an urgent need for effective, quantitative and automated rehabilitation 

services to meet the growing demand for long-term medical treatments and healthcare, and 

to compensate the lack of work force in rehabilitation professionals.  
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Robotic Exoskeletons are a viable solutions to these problems. Robot comes with 

numerous inherent advantages such as high adaptivity, better precision and control. As a 

result, more effective and autonomous rehabilitation devices can be constructed. 

 

1.2 Problem formulation 

Our research aims to carry out the design and development of a hand exoskeleton which 

could be used for providing rehabilitation to the patients with motor dysfunctions. 

Due to various disorders, trauma, and accidents, many individual lose their full potential 

mobility, due to which they are unable to do daily living tasks. They usually depend on 

others for all the activities, thus, they lose their physical independence.  

Rehabilitation is the procedure through which motor recovery can be achieved. 

Conventional rehabilitation techniques are cumbersome and require at least one person to 

assist the patient during the rehabilitation. This creates lack of interest on the patients’ 

part, as conventional methods are not interactive, also it poses a big problem of 

employing at least on attendant with every patient. 

Considering all this, robotic-assisted devices give a very valuable alternative. Robots 

usually have better control and adaptively. Due to these qualities, robotic exoskeleton is 

now widely used as a rehabilitation device.  

Using exoskeleton devices for rehabilitation provides better handling and interactive 

mechanism. As most of the exoskeleton devices are automated, they eliminate the need of 

a medical attendant during the rehabilitation. Also, robotic exoskeletons keep a record of 

a person’s recovery which helps in analyzing the performance. 

 

1.3 Organization of the Thesis 

This work consists of six chapters and is structured as follows: 
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Chapter 1 shows the Introduction and Overview and Motivation of this study. 

Chapter 2 focuses on the literature review done. This chapter shows the significant 

advances made in the exoskeleton based rehabilitation devices over the time. 

Chapter 3 presents the methodology used in this study. It talks about the design, 

simulation and manufacturing of the exoskeleton device. It also discusses the actuation 

mechanism involved. 

Chapter 4  discusses the controlling part of the exoskeleton, and introduces EEG. It tells 

us about the EEG signal recording, feature extraction and classification  

Chapter 5 presents the results of the current work. It includes the results of static 

simulation, dynamic simulation and feature classification. 
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Chapter 2 

Literature Review 

Several ways to restore upper limb function has been introduced in the literature. The 

orthosis can solve the problem of upper limb disability. Electrical stimulation is one of 

the techniques used for treatment and rehabilitation. Physical therapy remains one of the 

most effective techniques for dealing with disability issues. All kinds of work are 

concentrated on upper limb rehabilitation [8], [9], [10], [11], [12], [13], [14], [15]. 

Further research focused only on the rehabilitation of elbow joints [16], [17], [18], [19], 

[20], [21], [22], [23], [24], [25] , [26] or hand [27], [28], [29], [30], [31]. In order to 

overcome the problem of perceived processing defects, an innovatively integrated setup 

was proposed in [31] to provide users with EMG-based visual-tactile biofeedback. In 

[27], the authors present clinical evidence of the contribution of robots to the 

improvement of hand movement recovery in acute stroke patients. The ARAMIS 

(Automatic Arm Mobile Integrated System) project [32] developed a new rehabilitation 

exoskeleton design with multidisciplinary support and rehabilitation training specifically 

for upper limbs after stroke [32]. In the handwriting of children who have improved 

motor skills, the efficacy of robotics is explored [29]. In [33], the authors proposed an 

assisted torque system with a uniform surface electromyography (EMG) signal to 

improve the elbow torque capability of stroke patients. The EMG-based robotic hand 

device is envisioned to provide training for injured hands after a stroke [31]. The 

Supinator Extender (SUE) is a 2-DOF continuous pneumatic robot for measuring and 

assisting forearm supination - internal rotation and wrist flexion and extension [33]. [34] 
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presented a brief report of clinical experience involving the improvement of upper limbs 

in patients with stroke-related lesions assisted by robotics. The modeling, design, and 

control of the 2DOF exoskeleton robot (ExoRob) were developed in [35], [36], [37] to 

repair the elbow and forearm movements of physically disabled persons with impaired 

upper limb function. Based on the servo motor's application of torque to the elbow, 

Cozens JA developed a simple system in [16] that demonstrated an increase in the 

average range of active stretch buckling for each group of 10 patients. The author of [18] 

introduced a new design for an intelligent portable rehabilitation device that has real-time 

monitoring capabilities that can significantly improve the recovery process. 

Wearable interaction systems are being used these days for the rehabilitation. There have 

been many attempts to develop wearable interaction systems for the hand. Previously 

developed systems can be categorized into (1) cable-driven glove systems, (2) cable-

driven frame systems, and (3) exoskeleton systems by their structures and actuating 

mechanisms. 

As a cable-driven glove system, Exo-Glove [Fig. 1(a)] [38] was developed. It is an 

auxiliary glove for the disabled. The assisting force generated by the motor is applied 

through the cable. Because the system does not have a rigid frame, it is lightweight and 

easy to wear. However, it is difficult to apply a force at a specific position without a 

frame, and it is difficult to achieve precise tension control without a tension sensing 

mechanism process. 

Figures 1(b) - (d) show an example of a cable driven frame system with more rigid 

components than a cable glove configuration. The frame in the cable drive frame system 

supports the fingers and guides the cable. The cable pulley of HANDEXOS [Fig. 1(b)] is 

located on both sides of each joint to transmit the generated torque [39]. However, the 

pulley makes it difficult for adjacent fingers to be sufficiently close, thereby preventing 
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the fingers from moving naturally. The hand exoskeleton system of the PERCRO 

laboratory [Fig. 1(c)] uses a motorized cable module [40]. In this system, three fingers 

are used for each finger to change the direction and magnitude of the applied force; 

however, the overall system is bulky and cumbersome. Cyber Grasp (Fig. 1(d)) is a 

cable-driven frame system with one motor per finger [41]; in this system, the 

interference problem is minimized by placing the cable structure on the upper side of the 

finger. However, due to the components required for the cable mechanism, the system is 

large. 

The hand exoskeleton system, which utilized one active revolute joint for each finger, 

was developed (Fig. 1 (e)) [42]. It satisfies finger workspaces with a simple structure, but 

the whole system is quite big due to the space between the hand and exoskeleton 

structure for finger motions. FESTO developed a hand exoskeleton as a master-slave 

system with pneumatic actuators (Fig. 1 (f)) [43]. It shows smooth motion, but the 

required peripherals for the pneumatic actuators restrict its mobility. 

 In the field of robotics, hand exoskeleton is a widely exploited area by engineers and 

scientists. Keio University’s professionals have developed a mechanism which employs 

passive clutches to drive a three-finger non-isomorphic hand [44]. 

 A 4 DOF index finger successfully employing master-slave configuration was conceived 

by believed, he used haptic interface with active and passive multi-point feedback [45]. 

Stergiopoulos proposed an exoskeleton hand with two fingers having 3 DOF each and a 

thumb having 4 DOF, which aimed at VR grasping simulations [46]. Italian Institute of 

Technology (IIT) utilized an optimized RRR un-actuated mechanism to provide 45N of 

force in their exoskeleton, which can be used for teleoperation, VR and Human- Robot-

Interaction (HRI) [47]. Roberto Bortoletto proposes a spring actuated finger exoskeleton 

(Fig. 2) [48]. A four-fingered, multi phalanx hand was developed by the University of 
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Wisconsin. Bilal et al propose a bar structured upper limb rehabilitation device based on 

EEG.  

 

 

 

 

  
 

Fig. 2.1 Different devices proposed in the past. 
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Chapter 3 

Methodology 

3.1 Methodology 

We are proposing a linkage structure exoskeleton for the rehabilitation purpose. 

For this, we have to calculate the dimensions of the different links of the structure. We 

also have to find a space combination as well as a mechanism which will help in 

mimicking the trajectory of the human finger. 

Anthropometric data of the human finger and space consideration is taken into 

account for calculating the dimensions of the various links. Linkage structure comprises 

5 links in total and they are arranged in a manner to follow the natural path of the human 

finger. 

This linkage structure will be connected to a wheel assembly which will rotate in a 

circular path whose center is at PIP. Micro-controller based linear actuators will be used 

for actuation purpose. Linear actuators provide better control and precision during the 

motion also, their torque capacity is sufficient enough to execute the extension and flexion 

of finger. 

3.2 Design 

The proposed design consists of the following main components: 

1. Linkage Structure: It consists of 6 links. 3 of the standing links rest on the 

phalanges of the finger. Two links are somewhat parallel to the palm, these 2 links help 
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in transmission of motion from the actuator to the link structure. 6th link is in the shape 

of an arc which moves in a circular path with the center at PIP. This part also rests on a 

phalange. Linkage structure is so arranged that it should assist the finger in following the 

natural path of the human finger. 

2. Circular Part: It supports the wheels which move in a circular path whose center 

is at PIP. This part act like a connection between the linkage structure and the linear 

actuator. 

3. Base: The linear actuator will be mounted on this part, which will move the wheels 

and thus the linkage structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.1 Clockwise from the top: 1. Linkage structure, 2. Base, 3. 

Circular Part 
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3.3 Actuation Mechanism 

To impart the force on the device, in order to transfer the motion from this structure to the 

human finger, a micro controller based linear actuator is employed. 

The mechanism of this micro controller based linear actuator is constructed in such a way, 

that inside a cylinder, a servo motor is enclosed, whose shaft is connected to a lead screw 

with proper gear arrangement. The gear arrangement converts rotary motion of the servo 

motor into linear motion of lead screw. The rotation of this motor is controlled by a micro 

controller.  

The advantages of using a micro controller are:  

• Better precision and control 

• Compatible with the involvement of bio informatic signals like EEG and EMG (in 

future prospect) 

 

 
Fig 3.2 Proposed design mounted on Human Hand 



12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Static Simulation 

After the designing of the exoskeleton, static simulation was carried out to check the 

structural strength of the material used. ABS plastic was assigned as a material to the links 

while aluminum was selected as a material for circular guide way.  

Simulation was carried out at loading conditions of 30N, using AutoDesk Inventor©. 

 

 
 

Fig. 3.4 Actuation Mechanism 

 
Fig. 3.3 Proposed Design with Actuator 
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3.5 Dynamic Simulation 

As soon as the structural strength of the material was checked, the dynamic behavior of 

the device was needed to be analyzed. For this, we conducted dynamic simulation. The 

following methodology was adopted: 

Firstly, we obtained the natural trajectories of the human finger using the software 

Kinovea©. We marked the phalanges of the finger (index finger) with different colors. 

Then, we filmed the subject doing flexion exercise (Image 1 & 2).   Taking the video as 

an input, the software generated the trajectory of human finger with respect to the selected 

origin i.e.: PIP. 

Secondly, the corresponding points of the finger assisting device were traced, by carrying 

out the dynamic simulation on AutoDesk Inventor©. Different positions were obtained at 

different time instants. Image below shows the trajectory of finger assistive device at a 

given instant. Comparison between the trajectories obtained by the Kinovea and AutoDesk 

is shown in the Fig. 3.9. Once we got both the trajectories, i.e. the variation of their traces 

with time, we plotted all the points on a graph for comparison. 

Fig. 3.5 Model with specified load 
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Fig. 3.9 Variation of Human Finger & Exoskeleton with Time 

-40

-30

-20

-10

0

0 2000 4000 6000 8000 10000

Trajectory of Finger & Exoskeleton with Time

Trace (Real finger) Trace (Finger Exoskeleton)

        
Fig. 3.6 Marked finger in open position         Fig. 3.7 Marked finger in closed                                   
                                                                                  position showing trajectory 

Fig. 3.8  Trajectory of the finger assisting device 
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3.6 Manufacturing 

For manufacturing of the device, designed under previous sections, we used 3D printing 

technology. As no facility was available at our department for 3D printing, we approached 

a New Delhi based firm named Think3D for manufacturing purpose. All the components 

are manufactured using Selective Laser Sintering (SLS) technique. Material used for 

manufacturing is ABS plastic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       
                         (a)                                                                    (b) 

Fig. 3.10 Manufacured Device mounted on Hand. (a) in relaxed position 

(b) in flexed position 
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Chapter 4 

Controlling 

4.1 Overview of the Brain Computer Interface 

The human brain is the most complex organ of the human body and is the central part of 

the human nervous system. The human brain is the origin of our thoughts and serves as 

the command center by controlling most of the activities of the human body. The brain is 

suspended into a fluid known as cerebrospinal fluid (CSF) which helps in absorbing 

shocks and is protected by the skull and scalp [49]. The brain can be divided into three 

major parts- cerebrum, cerebellum and brainstem as shown in Fig. 1. 

1) Cerebrum: The cerebrum is the largest part of the brain, which contains the cerebral 

cortex and other structures such as hippocampus, basal ganglia, and olfactory bulb. The 

cerebrum is the uppermost region of the central nervous system and is regarded as the 

most important part of the human brain. The cerebrum consists of a huge amount of 

neurons and each neuron is connected to thousands of other neurons, thus making a large 

complex network [50]. The cerebrum is associated with brain functions related to 

thoughts, sensory perception, movements, judgement, emotions and motor functions. 

The cerebrum is divided into right and left hemispheres and each hemisphere is divided 

into four lobes: frontal, parietal, occipital and temporal [51]. 

• Frontal Lobe is the largest lobe of the brain and serves as home to the primary 

motor cortex. The frontal lobe plays an important role in voluntary walking and  
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regulates activities like walking. Other functions involve planning, problem solving, and 

reasoning. 

• Parietal Lobe is one of the major lobes of the brain which is positioned above 

the temporal lobe and behind the frontal lobe. The parietal lobe plays important roles in 

integrating sensory information from various parts of the body, knowledge of numbers 

and their relations [52].  

• Occipital Lobe is known as the visual processing center of the brain. An 

important functional aspect of the occipital lobe is that it contains the primary visual 

cortex. 

• Temporal Lobe consists of structures, which are important for long-term memory. 

The functions of temporal lobe involve language recognition, memory storage and 

auditory processing. 

 

2) Cerebellum: The cerebellum is the second largest part of the brain and is found at the 

lower back of the head. It is also made of two hemispheres. The cerebellum contains 

Fig. 4.1  Showing different parts of human brain [53]. 
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about half of the brain’s neurons. It is responsible for coordinating motor movements 

such as balance coordination and posture. It also plays a significant role in cognitive 

functions.  

3) Brainstem: The posterior part of the brain is known as the brainstem and connects the 

cerebrum to the spinal cord. It plays a significant role in regulating central nervous 

system and in the regulation of cardiac and respiratory functions. The other functions of 

the brainstem include regulation of sleep cycle, breathing, eating and heart rate. 

 

4.2 Electroencephalography (EEG) 

Electroencephalography (EEG) is a method of recording the brain waves by placing 

electrodes on the scalp. The term “Electroencephalography” (EEG) is the process of 

measuring the brain’s neural activity as electrical voltage fluctuations along the scalp that 

results from the current flows in brain’s neurons [54]. The first human EEG was 

recorded by German physiologist and psychiatrist Hans Berger in 1924 [55]. It is an 

electrophysiological monitoring method of recording electrical activity of the brain. EEG 

measures the voltage fluctuations produced because of ionic current produced in the 

brain’s neurons. To study brain functions and to diagnose neurological disorders such as 

epilepsy, dementia, tumor, abnormalities etc., the technique of EEG is widely used.  

   Routine clinical EEG involves recording of electrical pattern by placing electrodes on 

the scalp and lasts for about 20-30 minutes. The brain’s electrical charge is composed of 

billions of neurons. The neurons are electrically charged and are in a process of 

constantly exchanging ions in order to maintain their resting potentials and to propagate 

action potentials. In this process, the ions of similar nature tend to repel each other and 

consequently move out of the neurons and pushes other ions, which push their neighbors 

and thus the process continues making a wave of ions. When this wave of ions reaches 
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the electrodes placed on the scalp, it tends to push or pull the electrons present in the 

metals of the electrons and as a result, a difference in voltage arises between the 

electrodes. This recording of voltages over time gives us what is known as EEG. The 

electric potential because of a single neuron is very small and therefore the EEG activity 

is the result of the synchronous activity of millions of neurons having the same spatial 

orientation. 

In conventional scalp EEG, recording is typically achieved by placing the electrodes on 

the scalp with a conductive gel or paste, typically by preparing the scalp area by mild 

abrasion to reduce the impedance caused by dead skin cells. For most clinical and 

research applications the names and locations of the electrodes are specified by the 

International 10–20 system [56]. This is done to maintain consistency across the different 

laboratories. For clinical applications, the number of recording electrodes used are 

around 19 but in high-density arrays of electrodes, the number can reach up to 256. The 

10–20 system is an internationally recognized method and is based on the relationship 

between the location of an electrode and the underlying area of the brain. The actual 

distance between adjacent electrodes is 10% or 20% of the front-rear or left-right 

distance of the skull and that is why the name 10 and 20. The measurement is taken from 

the nasion, which is the point between the forehead and the nose, to the inon, which is 

the bony prominence at the base skull on the midline at the back of the head. Every 

location consists of a letter to identify the lobe and a number for identifying the location 

of the hemisphere. The letters F, T, C, P and O stand for Frontal, Temporal, Central, 

Parietal and Occipital, respectively. Even numbers depict the electrode positions on the 

right hemisphere, whereas odd numbers correspond to those on the left hemisphere. 
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The EEG can be typically described in terms of rhythmic activity and these rhythms 

have distinct properties in terms of spatial and spectral localization. 

• Delta rhythm: It lies in the frequency range up to 4 Hz. This is a slow rhythm and 

is found to be the highest in amplitude. It is seen normally in adults in slow-wave sleep. 

• Theta rhythm: It lies in the frequency range from 4 Hz to 7 Hz. Theta is seen 

normally in young children. It is also observed in drowsiness and in meditation.  

• Alpha: found in the frequency range from 7 Hz to 13 Hz. This rhythm is seen in 

the posterior regions of the head and emerges with closing of the eyes and with 

relaxation. 

• Mu rhythm: These are oscillations in the 8-13 Hz frequency band, being located 

in the motor and sensorimotor cortex. The amplitude of this rhythm varies when the 

subject performs movements. 

Fig. 4.2 Electrode locations of International 10-20 system for EEG 

(electroencephalography) recording [56]. 
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• Beta rhythm: lies in the frequency range from 14 Hz to about 30 Hz. Beta activity 

is closely linked to motor behavior and is generally attenuated during active movements. 

• Gamma rhythm: can be found in the frequency range ranging from 30–100 Hz. It 

is associated to various cognitive and motor functions. 

 

 

 

 

 

 

 

Band Frequency (Hz) 

Delta < 4 

Theta 4-7 

Alpha 8-15 

Mu 8-12 

Beta  16-31 

Gamma > 32 

Table 1. Showing different EEG bands [57] 

Time (s) 

Fig. 4.3  Different brain rhythm as measured by EEG [57], (a) 

indicates Delta waves, (b) indicates Theta, (c) Alpha, (d) Beta, 

(e) Mu waves and (f) Gamma 
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4.3 Data Acquisition 

To setup the Brain Computer Interface (BCI) we need an EEG recording data which can 

be used to run the microcontroller based linear actuator. For this, we decided to record 

the EEG data at the facility available in Electronics Engineering Department of AMU.  

The EEG signals were recorded from the 7 conventional EEG recording sites C1, C2, 

C3, C4, Cz, Fz, Pz. Five subjects volunteered for the recording of EEG signals while 

performing the following two tasks. 

Executed: 

Task 1- Initially hand is closed, Subject opens his/her hand and it will be kept open. 

Task 2- Initially hand is open, subject closes his/her hand and it will be kept closed.  

Due to that small of no. subjects and poor quality of the data recorded in previous 

step, we decided to utilize a standard data in our study so that better quality results can 

be achieved. 

The standardized data set utilized in this study consists of EEG data collected 

from one subject with a high spinal cord lesion controlling an EEG/EOG hybrid BNCI to 

operate a neuro-prosthetic device attached to his paralyzed right upper limb. The cue-

based BNCI paradigm consisted of two different tasks, namely the ‘imagination of 

movement’ of the right hand (class 1) and ‘relaxation/no movement’ (class 2). 

A visual signal randomly indicated the user either to close (Green Square) or not 

to move the device (red square): the two indications were given 24 times each in total 

separated by inter-trial intervals (ITIs) of 4-6 seconds. Each indication was displayed for 

5 seconds after which the device was driven back to open position. Re-setting the 

exoskeleton into open position required one second. 

EEG was recorded from 5 conventional EEG recording sites F4, T8, C4, Cz, and 

P4 according to the international 10/20 system using an active electrode EEG system 
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(Acticap® and BrainAmp®, BrainProducts GmbH, Gilching, Germany) with a reference 

electrode placed at FCz and ground electrode at AFz. EEG was recorded at a sampling 

rate of 200 Hz, band pass filtered at 0.4-70Hz and pre-processed using a small Laplacian 

filter. 

 

 

4.4 Feature Extraction 

 

A feature is a measurable property or characteristic of an observed signal. It should 

be informative, discriminative and orthogonal to other features. Feature extraction is the 

method of extracting these features. It can be defined as the process of transforming 

original data to a dataset with reduced number of variable but with the most discriminative 

information.  

After the wavelet transform, the Daubechies wavelet was used to analyze the channels 

F4, T8, C4, Cz and P4 of each EEG record. Then the features namely IQR, MAD, 

variance, skew, kurtosis, energy and standard deviation were calculated. The choice of 

     
 Fig. 4.4 EEG recording of the subject    Fig. 4.5 Experimental Setup of EEG          

 showing various electrodes while            recording. 

 performing MI task.          
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these particular features can be understood from the Fig. below, which shows that the 

two classes are statistically different. Particularly, the two classes differ in dispersion and 

the histogram of class 1appear to be skewed from the normal distribution. Thereby 

justifying the choice of IQR, MAD, Variance, Standard deviation, Skewness and 

kurtosis. However, the choice of Energy and MAV was done because it has been 

reported in many literature that Mu rhythm have lower amplitude than that of the alpha 

wave. 

 

 

4.41 Interquartile range (IQR)  

IQR is also called the mid-spread or middle 50%, or technically H-spread, is a 

measure of statistical dispersion, being equal to the difference between 75th and 25th 

percentiles, or between upper and lower quartiles.  

     𝐼𝑄𝑅 = 𝑄3 − 𝑄1    (1) 

In other words, the IQR is the first quartile subtracted from the third quartile. It is 

a trimmed estimator and is a commonly used robust measure of scale. The IQR can be 

used to identify the outliers. From Fig. 4.6, it can be seen that the histogram of class 1 is 

less dispersed than that of class 2. Therefore, it may capture distinctive information 

between the two classes. 

Fig. 4.6 Showing Histogram plots of the two classes. 

https://en.wikipedia.org/wiki/Statistical_dispersion
https://en.wikipedia.org/wiki/Percentiles
https://en.wikipedia.org/wiki/Quartile
https://en.wikipedia.org/wiki/Trimmed_estimator
https://en.wikipedia.org/wiki/Robust_measures_of_scale
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4.42  Median Absolute Deviation  

In statistics, the median absolute deviation (MAD) is a robust measure of 

the variability and is defined as the median of the absolute deviations from the data's 

median. MAD is used here to quantify the dispersion between the two classes. In MAD, 

median is calculated over the absolute values and no higher power term is used, thereby 

ensuring that all the deviations are weighted linearly. Therefore, making it more reliable 

than standard deviation. 

                             𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)|)                 (2) 

4.43  Variance  

Variance is the expectation of the squared deviation of a random variable from 

its mean. It measures how far a set of (random) numbers are spread out from their average 

value.  The variance is the square of the standard deviation, the second central moment of 

a distribution, and the covariance of the random variable with itself. 

    𝑉𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝜇)2]    (3) 

4.44  Skewness  

Skewness is a measure of the asymmetry of the probability distribution of a real-

valued random variable about its mean. Skewness is a descriptive statistic that can be used 

on conjunction with the histogram  to characterize the data or distribution. 

          𝛾 = 𝐸 [(
𝑋−u

𝜎
)

3

]     (4) 

4.45 Kurtosis  

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Robust_statistics
https://en.wikipedia.org/wiki/Statistical_dispersion
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Absolute_deviation
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Deviation_(statistics)
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Central_moment
https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Histogram
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It is a measure of the "tailedness" of the probability distribution of a real-

valued random variable. The kurtosis is the fourth standardized moment. Kurtosis is a 

descriptor of the shape of a probability distribution. 

    𝐾𝑢𝑟𝑡(𝑋) = 𝐸 [(
𝑋−u

𝜎
)

4

]    (5) 

4.46  Standard Deviation  

Standard Deviation is a measure that is used to quantify the amount of variation 

or dispersion of a set of data values. A low standard deviation indicates that the data points 

tend to be close to the mean of the set, while a high standard deviation indicates that the 

data points are spread out over a wider range of values. The standard deviation of a  data 

set is the square root of its variance. 

   𝑆𝐷 =  √
1

𝑁
 ∑ ((𝑥[𝑛] −

1

𝑁
∑ 𝑋[𝑛]𝑁

𝑛=1 )
2

)𝑁
𝑛=1     (6) 

4.47  Energy  

Energy is defined as they are under the squared magnitude of the considered signal. 

Mathematically,  

    𝐸𝑠 =  ∑ |𝑥(𝑛)|2∞
𝑛= −∞      (7) 

4.48  Mean Absolute Value (MAV)  

It is calculated by taking the absolute value of the all the samples and then by 

calculating the mean of the resultant samples. Mathematically, it can be defined as:   

    𝑀𝐴𝑉 =  
1

𝑁
∑ |𝑥𝑖(𝑛)|𝑁

𝑖=1  

 

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Standardized_moment
https://en.wikipedia.org/wiki/Statistical_dispersion
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Variance
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4.5 Feature Selection 

This chapter describes the feature selection driven classifier combination approaches 

for the classification of Motor imagery based EEG. Feature selection, widely used by 

researchers under different names such as variable selection, attribute selection or variable 

subset selection. It is the process of selecting a subset of relevant features for the 

construction of classifier different combined features. Before performing the feature 

selection, we normally assume that the data contains many redundant or irrelevant features. 

Redundant features are those, which provide not more information than the currently 

selected features, and irrelevant features provide no useful information in any context. 

Feature selection techniques is to be distinguished from feature extraction. Feature 

extraction creates new features using functions of the original features, whereas feature 

selection returns a subset of the features. In the real world classification domain the class 

probability and class conditional probability is often unknown a priori, often the feature 

suitable for particular classification test is not known in advance. Therefore, randomly 

features are chosen for classification problem. 

Feature selection techniques are used for four reasons:  

1. Simplification of different combined features to make them easier to be 

interpreted [57]. 

2. Shorter training times, 

3. To avoid the curse of dimensionality,  
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4. Enhanced generalization by reducing overfitting. 

In this study, Random forest based feature selection method is used. Random forests 

consist of few hundred decision trees, each of them built over a random extraction of the 

observations from the dataset and a random extraction of the features. Not every tree sees 

all the features or all the observations, and this guarantees that the trees are de-correlated  

and therefore less prone to over-fitting. Each tree is also a sequence of yes-no questions 

based on a single or combination of features. At each node (this is at each question), the 

three divides the dataset into 2 groups, each of them hosting observations that are more 

similar among themselves and different from the ones in the other group. Therefore, the 

importance of each feature is derived from how “pure” each of the group is. When training 

a tree, it is possible to compute how much each feature decreases the impurity. The more 

a feature decreases the impurity, the more important the feature is. In random forests, the 

impurity decrease from each feature can be aggregated (majority vote) across trees to 

MAV 

Energy 

SD 

Variance 

MAD 

IQR 

Skew 

Kurtosis 

Fig. 4.7 Showing relative feature importance. 
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determine the final importance of the variable. For classification, the measure of is either 

Gini impurity or entropy (Information gain).  

Table 2. Showing relative feature importance of the features 

 

The ranked features using random forest are shown in Fig. 4.5. It can be seen that 

Mean absolute variation (MAV) has the highest feature importance while kurtosis has the 

lowest. Feature importance indicates the variation capturing power of a feature. This 

suggests that MAV and entropy should be the best features while skewness and kurtosis 

should not perform much well in this study. 

4.6 Classification 

The classification of EEG signals plays an important role in biomedical research. 

Classifying EEG signals is very important in the diagnosis of brain diseases and for 

contributing to a better understanding of cognitive processes. It is, firstly, important to 

extract useful features from raw EEG signals, and then use the extracted features for 

classification. According to [1] classifiers used in BCI research are generally of 5 types. 

Linear classifiers, nonlinear classifiers, neural network, nearest neighbor classifiers and a 

combination of these. Linear classifiers are discriminant algorithms that use linear 

functions to distinguish classes. These are the most popular algorithms for BCI 

applications.  

FEATURE NO. AND NAME 80-20% TRAINING-TEST PARTITION 

1 0.09918364 

2 0.09468473 

3 0.17526146 

4 0.13827761 

5 0.09495038 

6 0.09873715 

7 0.16575618 

8 0.13314885 
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Neural network is also a widely used classifier in BCI research. Neural network is 

an assembly of several artificial neurons, which enable to produce nonlinear decision 

boundaries. Nonlinear classifiers produce nonlinear decision boundaries, which enable 

them to perform more efficient rejection of uncertain samples than discriminative 

classifiers.  

In this work, Random Forest algorithm was optimized for classifying EEG signals. 

Random forests is an ensemble learning algorithm. The basic premise of the algorithm is 

that building a small decision-tree with few features is a computationally cheap process. 

If we can build many small, weak decision trees in parallel, we can then combine the trees 

to form a single, strong learner by averaging or taking the majority vote. In practice, 

random forests are often found to be the most accurate learning algorithms to date. The 

pseudocode is illustrated in Algorithm 1. 

The algorithm works as follows: for each tree in the forest, we select a bootstrap 

sample from S where S (i) denotes the ith bootstrap. We then learn a decision-tree using a 

modified decision-tree learning algorithm. The algorithm is modified as follows: at each 

node of the tree, instead of examining all possible feature-splits, we randomly select some 

subset of the features f ⊆ F. where F is the set of features. The node then splits on the best 

feature in f rather than F. In practice, f is much, much smaller than F. Deciding on which 

feature to split is oftentimes the most computationally expensive aspect of decision tree 

learning. By narrowing the set of features, we drastically speed up the learning of the tree. 

The majority voting of the classification trees that have been formed obtains the prediction 

of the classification. 
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Random forest is an extension of a collection of methods developed by Breiman 

(2001) and is used to improve the classification accuracy. The randomization process in 

random forest to form the tree is carried out not only on the sample data but also on the 

predictor variables, leading to a collection of classification trees with different sizes and 

forms. The expected result is a collection of classification trees with very low correlation 

between the trees. This low correlation reduces the classification accuracy produced by 

random forest 

 

 

 

Dataset 

Fig. 4.8 Showing decision tress in a random forest. 

Random Forest 
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Algorithm 1 Random Forest 

Precondition: A training set S := (x1, y1), . . . ,(xn, yn), features F, and number of trees in               

forest B. 

1 function Random_Forest(S, F) 

2    H←0 

3    for i ϵ 1, …. , B do 

4           S(i) ← A bootstrap sample from S 

5           hi ← RandomizedTreelearn(S(i),F) 
6            H ←H U {hi} 
7    end for 

8    return H 
9 end function 

10  
11 function RandomizedTreelearn(S,F) 
12       At each node: 
13             f ← very small subset of F 
14             Split on best feature in f 
15        return The learned tree 
16 end function 

Table 3. Pseudo Code for Random Forest algorithm 
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Chapter 5 

Results and Discussion 

5.1 Results of Static Simulation 

The static analysis has reflected an idea of the distribution of various properties over the 

complete assembly using localized mesh control through finite element analysis. The 

properties discussed in the static analysis report are: 

Stress, Displacement, Strain and Safety Variation. 

 

 

 

                                 
    Fig.5.1 Distribution of Stress          Fig. 5.2 Variation of Displacement 

 

                       
      Fig. 5.3 Variation of Strain           Fig. 5.4 Factor of Safety Variation 
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5.2 Results of Feature Classification 

We have used several measures in order to evaluate the effectiveness of our method. 

These measures are classification accuracy, sensitivity and specificity.   

 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (%)  =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
  

Where, TP is True positive, TN is True negative, FP is False positive, FN is False  

 

 

 

No of Selected Feature 
Features 

1 F3 

2 F3, F4 

3 F3, F4, F8 

4 F3, F4, F8, F2 

5 F3, F4, F8, F2, F7 

6 F3, F4, F8, F2, F7, F1 

7 F3, F4, F8, F2, F7, F1, F6 

8 F3, F4, F8, F2, F7, F1, F5 

No of Features Selected Classification Accuracy (%) 
1 62.5 

2 85.41 

3 76.14 

4 63.85 

5 85.41 

6 76.97 

7 78.64 

8 72.5 

Table 5. Shows the classification accuracies on the testing data for the different 

combined features. Among the, #5 and #2 achieved the highest classification 

accuracy 85.41% 

Table 4. Showing different combined features and the corresponding selected 

features 
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Negative, TN is True negative.  

The wavelet transform analysis was performed on the dataset and the feature 

importance of the different extracted features was calculated using the Random Forest 

Different combined features in Scikit-learn. After which, the selected features were 

classified into two classes. Table 4 shows the combination of different features according 

to their relative importance. Table 5 shows the classification accuracy of those combined 

features according to the relative importance. Therefore, we constructed eight different 

combined features with a different number of features to obtain the classification different 

combined features. In Table 4, F3 is shown to be with the highest feature importance, 

hence selected first. After which F3 an F4 are combined, then F3, F4 and F8 and so on. 

From Table 5, it can be seen that though the feature F3 has the highest relative importance 

among the extracted features, it did not capture the significant distinctive information. 

However, combining F3 and F4 achieved the highest classification accuracy of this 

method. This suggests that feature F4 compliments the information captured by F3 and 

enhanced the accuracy. Similarly, when 5 features are selected it achieved a similar 

accuracy of 85.41 as reported for 2 features. 
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Chapter 6 

Conclusion and Future scope 

In this study, design and development of a linkage structure based exoskeleton for the 

finger rehabilitation has been proposed. The structural strength of the designed device is 

laid down by the static simulation results. The results clearly showcased that different 

design parameters fall well under stipulated limit. This study also proves that the 

proposed design strongly mimics the natural trajectory of human hand, through dynamic 

simulation results using Kinovea software. 

 This study utilized the robotic technology for the controlling of proposed 

exoskeleton. Microcontroller based linear actuator Firgelli is anticipated to be used for 

the actuation of designed exoskeleton. For the controlling of this actuator, use of EEG 

signals is proposed. The EEG data used in the study is analyzed on statistical features 

like Mean absolute Variation, MAD, skewness, kurtosis, IQR, standard deviation, 

variance and energy. All these parameters are utilized to extract the underlying 

information from a dynamic EEG. This study has shown that the proposed features were 

successful in capturing the relevant distinguishing information. Also, it can be seen that 

the different combined features #2 and different combined features #5 has the same 

accuracy while #5 uses 5 features and #2 uses 2 features. This shows that a good 



37 

 

accuracy can be observed by using lesser number of features and thereby relieving the 

computation cost of the method. 

 The future course of study should aim to program the microcontroller in 

accordance with the EEG data, so that over all working of device can be carried out. 

Also, in the near future this approach can be extended to develop various finger assisting 

devices as per the anthropometric data of different fingers. Connecting all the finger 

assisting device to a controller will ultimately result in developing a hand rehabilitation 

device. The individual assistance provided to each finger during the rehabilitation of 

human finger would be a novel method. 
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